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A B S T R A C T

The materials discovery problem usually aims to identify novel “outlier” materials with extremely low or high
property values outside of the scope of all known materials. It can be mapped as an explorative prediction
problem. However, currently the performance of machine learning algorithms for materials property prediction
is usually evaluated via k-fold cross-validation (CV) or holdout-test, which tend to over-estimate their ex-
plorative prediction performance in discovering novel materials. We propose k-fold-m-step forward cross-vali-
dation (kmFCV) as a new way for evaluating exploration performance in materials property prediction and
conducted a comprehensive benchmark evaluation on the exploration performance of a variety of prediction
models on materials property (including formation energy, band gap, and superconducting critical temperature)
prediction with different materials representation and machine learning algorithms. Our results show that even
though current machine learning models can achieve good results when evaluated with traditional CV, their
explorative power is actually very low as shown by our proposed kmFCV evaluation method and the proposed
exploration accuracy. More advanced explorative machine learning algorithms are strongly needed for new
materials discovery.

1. Introduction

A common research problem in materials science is to discover new
materials with higher or lower physical/chemical properties based on
all known materials. This includes the efforts seeking materials with
higher thermal conductivity [1], ionic conductivity for the fuel cell or
lithium-battery materials [2,3], higher electronic conductivity, optical
property, and higher superconducting critical temperature [4]. On the
other hand, researchers have also been seeking insulation materials
with extremely lower thermal conductivity [5,6] or materials with
lower electronic conductivities, etc. The common challenge among
these problems is how to identify new materials whose figure of merit
or performance measure is beyond domain of all known materials. From
the perspective of data science, here we are more interested in building
predictive models that have stronger explorative power rather than
interpolation power so that it allows us to find materials with “outlier”
performance beyond region of known materials where no known
samples exist. Accordingly, machine learning (ML) algorithms with
high explorative power are needed to build prediction models for high-
throughput screening.

In the past several years, many researchers applied data-driven
based machine learning techniques to predict material properties
[4,7–18], using the large-scale data collection based on computation by
Density Functional Theory (DFT)[19], such as the Materials Project
(MP)[20], Open Quantum Materials Database (OQMD)[21,22], the
Automatic Flow of Materials Discovery Library (AFLOWLIB.ORG)[23].
However, most of current practice of machine learning in materials
informatics has inappropriately stuck to the traditional machine
learning model evaluation approaches [18,24,25,26]. Meredig et al.
[24] summarized the reported regression performance of six materials
property prediction models in the literature, all showing excellent R2
scores while “materials discovery has not been revolutionized yet” and
these models are far from being able to be used as a one-shot high-
throughput screening of large numbers of materials for desired prop-
erties. In Table 1, a more comprehensive summary of reported model
performance is shown, which are uniformly excellent across different
studies on prediction models of different materials properties.

Meredig et al. [27] suggested that the traditional cross-validation
(CV) has critical shortcomings in terms of quantifying ML model per-
formance for materials discovery. Actually, many of the good
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performance scores are due to the highly redundant or similar training
samples in the dataset [18]. These models are very likely to fail when
used to find “outlier” materials with few known samples around. New
performance measures are needed to more objectively evaluate the
exploration rather than interpolation power for the discovery of “out-
lier” materials. Indeed, few methods have been proposed to explicitly
train explorative machine learning models as done in [27–29].

In standard machine learning, three types of evaluation methods are
commonly used (see Fig. 1). The first one is the holdout method which
randomly divides the whole dataset into a training set, a validation set
and a holdout/test set, then trains the predictive model over the
training set, finds the best parameters for the model over the validation
set and evaluates its performance on the holdout/test set. However, the
performance can be biased based on the splitting if the dataset is small.
The second commonly used method is k-fold cross-validation, in which
the data is divided into k subsets. Now the holdout method is repeated k
times, such that each time, one of the k subsets is used as the valida-
tion/test set and the other −k 1 subsets are put together to form a
training set. The error estimation is averaged over all k trials to get the
total effectiveness of the model. Here each sample gets to be in a va-
lidation/test set exactly once and gets to be in a training set −k 1 times.

It significantly reduces bias as we are using most of the data for fitting,
and significantly reduces variance as most of the data is also being used
in the validation/test set. The last method for performance evaluation is
leave-one-out cross-validation, which is just a special case of k-fold
cross-validation when k is set as the number of samples of the whole
dataset. In this case, each time a single sample is held out as the vali-
dation/test sample while all the remaining samples are used in training.

The problem with the standard model evaluation methods is that
they are designed for evaluating interpolation power rather than ex-
plorative power as needed for materials property prediction model
evaluation.

2. Related work

The first investigation of the limitation of the traditional cross-va-
lidation approach for quantifying materials prediction models is re-
ported by Meredig et al. [27]. They suggested that traditional cross-
validation has critical shortcomings in terms of quantifying ML model
performance for materials discovery. Basically, materials informatics
practitioners prefer the extrapolative power of the model to find “out-
lier” samples with unseen extremely good performance. In addition,

Table 1
Materials informatics model results from the literature. Mean absolute error (MAE), root mean squared error (RMSE) and coefficient of determination (R2) are three
common regression performance metrics.

Material dataset Dataset size Property Technique Evaluation method Performance Ref

Inorganic compounds (Materials
Project)

28,046 Formation energy Crystal Graph Convolutional
Neural Network (CGCNN)

60% train, 20%
validation, 20% test

MAE=0.039 eV/atom [12]
16,458 Band gap MAE=0.388 eV

Inorganic compounds (OQMD) 256,673 Formation energy MLP with one-hot composition
representation

90% train, 10% test MAE=0.072 eV/atom [15]

Inorganic compounds (ICSD
subset in OQMD)

Over 30 k Formation energy Random forest with Magpie
descriptor

30,000 for train, 1,000
for validation

R=0.988
MAE=0.09 eV/atom
RMSE=0.15 eV/atom

[11]

X YZ2 formula from OQMD 69,710 Formation energy CNN with periodic Table
Representation

65,710 for train, 4,000
for test

MAE=0.007 eV/atom [13]

ABC D2 6formula About 10 k Formation energy MLP with Atom2Vec descriptor Not reported MAE=0.15 eV/atom [38]
SuperCon About 9 k Superconducting critical

temperature
Random forest with Magpie
descriptor

85% train, 15% test R2 =0.88 [4]

Fig. 1. Commonly used evaluation methods in machine learning. a) hold-out method; b) k-fold cross-validation; leave-one-out as a special case of k-fold cross-
validation when k is the number of samples.
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researchers in materials science often perform extrapolative regression
rather than pattern matching classification based on datasets that are
neither uniformly nor randomly sampled within their domains. They
proposed Leave-one-cluster-out cross-validation (LOCO CV) method to
avoid the inflated performance of traditional cross-validation approach
due to redundant samples from families of materials and the random
sampling procedure. In their approach, instead of using random split-
ting of the dataset for cross-validation, LOCO CV first applies a clus-
tering procedure to split the dataset into k clusters, and then does
traditional k-fold cross-validation. This cycle will be repeated for sev-
eral k values then the results across different values of k are summar-
ized by computing median and standard deviation across k. However, a
major drawback of this approach is that in real-world materials dis-
covery, the datasets are not given by clusters. Instead, the materials
discovery problem is: given all known materials of the best Figure of
Merit (FOM) value of θ, can the prediction model find materials with
higher FOM? This inspires us to use FOM for splitting instead of using
clusters. Extrapolation power of predictive models is usually under-
stood in terms of input domain (how the materials are represented): we
have extrapolation when one asks a trained model to predict values for
input data points (materials) that are outside the observation domain.
Here, we are more interested in evaluating how the models can dis-
covery new materials with “out-of-the-boundary” FOM properties. We
call this prediction power as explorative prediction power compared to
extrapolative prediction power.

Other related work on extrapolation of machine learning models is
reported in [28,29]. Margius and Lampert [28] proposed a neural
network approach to learn interpretable functions using an end-to-end
differentiable feedforward neural network framework with efficient
gradient-based training. The model has the advantage of being able to
extrapolate to an unseen domain. The concise interpretable mathema-
tical expression is obtained via a sparsity regularization of the loss
function. Compared to interpolation of black-box regression, their ap-
proach allows understanding functional relations and generalizing
them from observed data to unseen parts of the parameter space.
Analytical function learning is also called symbolic regression in evo-
lutionary computation. Schimit and Lipson [30] used genetic pro-
gramming, a special form of genetic algorithms to evolve and discover a
series of scientific laws from observation data. However, they have not
systematically explored its performance in terms of exploration in the
unseen domain.

Extrapolating in the data domain implies that the data distribution

at prediction time will differ from the data distribution at training time.
LOCO CV addresses the limitation of the traditional cross-validation
method by splitting the samples in the feature space, which gives a
better evaluation measure of the explorative power of the predictive
models. This paper aims to develop a set of new evaluation methods –
k-fold-m-step forward cross-validation (kmFCV) – aiming to split the
training samples according to the property values and to evaluate how
likely a predictive model can predict the materials property outside of
the training samples domain. This method avoids the arbitrary de-
termination of the clusters needed in LOCO CV approach. Our main
contributions can be summarized as:

1. We propose a set of new forward cross-validation methods and a
new metric for evaluating the explorative prediction power of ma-
terials property prediction models.

2. We compare how our forward cross-validation methods help to
differentiate high explorative models from low ones.

3. We evaluate how materials representation/descriptor and machine
learning algorithm affect the explorative prediction power of ma-
chine learning models through extensive benchmark studies.

The remaining part of the paper is organized as follows: Section 3
introduces the explorative forward cross-validation methods, the
benchmark datasets, benchmark materials descriptors, and benchmark
machine learning algorithms. Section 4 shows the comparison results of
the proposed forward cross-validation methods and traditional cross-
validation method. We discuss the advantages and disadvantages of our
method and how different factors affect the explorative power of the
materials property prediction models. We conclude our paper in Section
5.

3. Methods

3.1. New evaluation methods for benchmarking the explorative prediction
capability

In order to evaluate if a prediction model of material properties has
exploration capability, i.e. trained on a group of materials and has
predictive power for materials in a different domain. We propose the
following set of explorative evaluation schemes:

Fig. 2. Diagram of k-fold forward cross-validation.

Z. Xiong, et al.



3.1.1. Forward holdout validation (Forward-holdout)
This evaluation method is similar to the holdout validation method

in standard machine learning except that we first sort all data samples
by the ascending/descending target property and then split it into
training and validation sets. When sorted by ascending, the subset with
lower property values is set for training, and the other set is used for
testing. This evaluation method is good for learning models to discover
materials with higher property values. Similarly, if the dataset is sorted
by descending, the set with higher property values is set as the training
set, and the other set is used for testing. This evaluation method is good
for learning models to discover materials with lower property values
such as extremely low thermal conductivity.

3.1.2. K -fold forward cross-validation (k-fold FCV)
The k-fold forward cross-validation is an improvement over tradi-

tional k-fold cross-validation for evaluating explorative prediction
power of models. Instead of randomly partitioning the dataset, all the
samples are first sorted by the materials property values and then split
into k subsets evenly. The whole process is as follows:

1. Sort all samples by ascending/descending property values
2. The sorted samples are partitioned into k equal-sized subsets S1, S2,

…, Sk
3. Starting from the second subset S2, set S2 as the validation set and

the first subset S1 as the training set, train a model on S1, and
evaluate its performance on S2

4. Next round, set S3 as the validation set and all subsets before S3 as
the training data, i.e., train a model on S1 and S2 and evaluate its
performance on S3

5. Repeat step 4 until all S2 to Sk have been evaluated. Calculate the
overall performance of all models

Whether to sort the samples by ascending or descending property
values depends on which side – higher or lower – we expect the model
to extrapolate. With the relatively large k value, the training set size
might be too small at the very first beginning. A minimum size of the
training data can be set to prevent the result from being distorted by
this issue.

3.1.3. Leave-one-out forward cross-validation (LOOFCV)
Leave-one-out forward cross-validation (LOOFCV) is a special case

of k-fold forward cross-validation in which the samples are split into N
subsets where N is the total number of samples.

3.1.4. K -fold-m-step forward cross-validation (k-fold-m-step FCV)
K -fold-m-step forward-cross-validation is an extension of k-fold

forward-cross-validation by assuming an −m 1 number of subset gap
between the last training subset and the validation subset. Starting with
the ( +m 1)th subset set as the validation set and the first subset as the
training set, train the model and evaluate its performance. Then set the
( +m 2)th subset as the validation set and the first and second subset as
training sets. Repeat this until the last subset is set as the validation set.
This evaluation method can be used to test how a given model can
predict the materials property values m step of subset away from the
training set. It can avoid the overestimated performance due to local
nearby redundancy samples. k-fold forward cross-validation is a special
case of k-fold-m-step forward cross-validation when m is 1.

3.1.5. Performance metrics
Similar to the case of traditional cross-validation, the performance

metrics of forward cross-validation methods can be calculated from the
subsets of corresponding predictions. Three different performance me-
trics – Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)
and Coefficient of Determination (R2) can be calculated across all ex-
periments in order to compare the performance of different algorithms.
All the prediction results of subsets will then be aggregated to calculate

the overall performance.
In addition to the three traditional regression metrics, we introduce

a new classification metric called exploration accuracy (EAccuracy) to
evaluate the exploration performance of prediction models. When
doing k-fold-m-step forward cross-validation, for each fold, a training
domain threshold θ is set as the largest property value in the training set
of that fold. And then a sample in the validation set is labeled as po-
sitive if its predicted property value is equal to or larger than the do-
main threshold or as negative if the predicted value is smaller than the
threshold value θ. An accuracy score can then be calculated based on all
these positives and negatives: =

+
Eaccuracy Positive

Positive Negative
#

# # . This explora-
tion accuracy metric can be used to evaluate how likely a model can
correctly classify a validation sample into within-domain or outside-
domain. An exploration compatible predictor should achieve high ex-
ploration accuracy. On the other hand, predictors that cannot predict
property values outside of the domain of its training samples will get
zero Eaccuracy.

3.2. Benchmark datasets

We prepared three benchmark datasets from public databases for
evaluating explorative prediction capabilities of current machine
learning algorithms and descriptors. Firstly, the publicly available
Materials Project database [20], which contains more than 86,000 in-
organic compounds when the data was collected, is used in this study as
the benchmark dataset to predict two materials properties – formation
energy and band gap. It contains the Density Functional Theory [19]
calculated properties of all these compounds. The materials in MP
consist of as many as 7 different elements and over 90% of them are
binary, ternary or quaternary compounds. The number of atoms varies
from 1 to 200. Formation energy and band gap are selected as bench-
mark properties because they are the most researched properties by
materials informatics researchers and the evaluation results can be
compared with all previous studies.

The second benchmark dataset in this study is the SuperCon data-
base [31] with the critical temperatures of all known superconductors.
It was created and maintained by the Japanese National Institute for
Materials Science. The superconducting critical temperatures are from
experiments. Stanev [4] has been putting the effort in developing a
classification model to classify the samples into two classes with above
or below 10 K critical temperature and a regression model to predict the
critical temperature using random forest (RF)[32] algorithm with
Magpie descriptor [10]. We extracted a list of about 9 k samples with
the superconducting critical temperature above 10 K as the exploration
preformation benchmark dataset as we are looking for materials with
higher critical temperatures.

Data filtering is conducted before the datasets are used for the
benchmark. The MP database contains DFT calculations of formation
energy and band gap for 83,989 compounds when the data were col-
lected. In the case that more than one compounds share the same
composition, the one with the lowest formation energy is chosen since
lower formation energy indicates a more chemically stable compound.
Also, outliers of which the property values are outside of ± σ5 (σ is the
standard deviation) bound are removed. The compounds with only one
element are also removed as their formation energy is considered as
zero. What’s more, ill converged samples in the MP dataset – (a) any
crystal with a warning tag, which usually states a significant structural
change during relaxation, (b) any crystal without a calculated band
diagram, since it usually means the calculation is not very accurate –
are removed. After the filtering, there remain 35,216 compounds out of
MP for formation energy prediction evaluation, 20,065 compounds out
of MP for band gap prediction evaluation, and 6,258 compounds out of
SuperCon for superconducting critical temperature prediction evalua-
tion as shown in Table 2.

When comparing different representation/descriptor performance,
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the dataset needs to be filtered to be applicable to all of them in order to
prevent introducing additional factors. The Periodic Table
Representation (PTR)[13], which will be briefly introduced later, can
only represent the compound with 52 elements in the periodic table due
to its limitation. The compounds that contain elements out of these 52
ones are removed. After removing the compounds out of the PTR re-
presentation elements, the representation set sizes are 18,274, 10,042
and 2,876 respectively, shown in Table 2.

3.3. Materials descriptors and machine learning algorithms for materials
property prediction

We evaluated the exploration performance of a set of machine
learning algorithms with the following materials descriptors: Magpie,
elemental one-hot composition representation, period table re-
presentation (PTR), and crystal graph representation.

Magpie (Materials Agnostic Platform for Informatics and
Exploration) is a materials descriptor proposed by Ward et al. to convert
compound composition into meaningful features [10], which can be
conveniently calculated using matminer [33] and Pymatgen [34]. It
computes a set of features for a given material including elemental
property statistics like the mean and the standard deviation of 22 dif-
ferent elemental properties.

One-hot composition representation [15] is an encoding method for
compounds based on their formula. The size of the feature vector is set
to the total number of elements in the dataset and the feature values are
the ratios of the constituent elements in the compound. For example,
for a compound with the formula CO2, the values of the corresponding
positions of C and O in the feature vector are 0.33 and 0.66 respec-
tively, with all other positions being set as zero and all nonzero values
being added up to be 1.

Periodic table representation [13] uses a 2-D matrix to represent the
composition of a compound, which makes it similar to an image con-
sisting of 2-D pixels. Pattern recognition of images has been widely and
successfully addressed using convolutional neural networks (CNNs). In
this encoding, all values of the matrix are first initialized as −1 and
then the blank spaces in the corresponding spot of the periodic table are
set as 0. The values of the element positions in the matrix are set as the
atom numbers of the elements in the compound. Then the matrix is
multiplied by 20 to mimic a digital image to ease the training process of
the CNN. Due to the limitation of the representation, only a rectangular
area of the periodic table can be represented, which means the com-
pounds with the elements outside of this area cannot be represented.
CNN with PTR has been applied to an X YZ2 formula materials group for
formation energy and stability prediction with great performance by
Zheng et al. [13], as shown in Table 1.

Crystal graph representation of compounds is used in CGCNN [12],
an end-to-end graph convolution based deep learning framework for
materials property prediction. It is the only model we evaluated here
that utilizes the crystal structure information for property prediction,
which directly learns material properties from the interactions of atoms
in the crystal, providing a universal and interpretable representation of
crystal structures. Since the SuperCon dataset doesn’t come with
structural information, CGCNN can only be applied to the MP datasets.
This model has been applied to predict 7 properties over the MP dataset
and demonstrated the superior performance compared to the other
models tested here, as shown in Table 1. The convolutional neural

model consists of three convolutional layers with 64 nodes followed by
a fully connected layer with 128 nodes. SGD is used for optimization.
Batch size is 256 and 30 epochs are trained for each model.

Three types of machine learning models are used in our experiments
to build materials property predictors using the Magpie descriptor and
one-hot composition representation, both of which are one-dimensional
feature vectors. They are 1-Nearest-Neighbor (1NN), random forest
(RF) and multilayer perceptron neural network (MLP). First, a naive
1NN has been suggested as an essential benchmark to contextualize
performance of materials informatics models [27]. It serves as the
baseline for the property prediction problem, as the prediction is based
on the nearest sample in terms of a distance metric (Euclidean distance
used in our model) from the training set. Since test samples in ex-
ploration experiments are usually regarded as outliers, little explorative
power is expected from 1NN models. Second, RF is a popular ensemble
model that has been used in a variety of materials property prediction
research [4,10,11]. It is a bagging technique that builds up a strong
learner from an ensemble of weak decision trees. Both 1NN and RF are
implemented using the scikit-learn python package [35]. The number of
decision trees for RF is 100, which comes from the experience of the
previous research [11]. The max number of features in RF model is 10,
in order to significantly reduce the calculation time but maintain a
relatively good performance, as the k value is large (see Section 4.2 for
justification of approach). The third model is MLP, which has been well
investigated and the strong prediction power for formation energy was
reported using one-hot composition representation [15]. MLP is a va-
nilla artificial neural network which usually consists of three or more
fully connected layers with nonlinear activation functions. A seven-
layer MLP with six fully connected layers with 1024, 1024, 512, 512,
128, 128 nodes and an output layer with 1 node, is trained based on the
hyper-parameter tuning experiments from previous research. We used a
batch size of 128 with Adam [36] optimizer in training. There are three
dropout layers with 0.5 rate between fully connected layers with dif-
ferent nodes. The loss function is MAE and a total number of training
epochs is set as 30.

4. Results and discussion

4.1. Why a new evaluation method is needed to measure exploration
performance for materials property prediction

Machine learning models are usually evaluated by cross-validation
to measure the interpolation power. However, in order to drive mate-
rials discovery for superior properties, good exploration performance is
the key to enabling the ML models to be used for high-throughput
screening of materials with desired properties. However, traditional
cross-validation methods in which the samples are randomly split into
folds are not well suited for evaluating the exploration performance.

To illustrate this issue, we did a special training/test split on the MP
formation energy dataset and applied two models to it – RF and MLP
with the same one-hot composition representation. The samples are
first randomized and then split into three sets – first 10%, middle 80%,
and last 10%. The middle set is used as the training set and the two end
sets are used as the test sets. Fig. 3(a) and (b) shows the prediction
errors of RF and MLP using this special hold-out method. The absolute
errors of all the samples are shown as scattered dots. The difference
between RF and MLP can hardly be observed.

Table 2
Datasets summary. The dataset sizes and names before and after data filtering.

Dataset Original size Complete Set Representation Set

Formation energy (MP) 83,989 35,216 (MPFE-35 K) 18,274 (MPFE-18 K)
Band gap (MP) 83,989 20,065 (MPBG-20 K) 10,042 (MPBG-10 K)
SuperCon 16,413 6,258 (SC-6 K) 2,876 (SC-2.8 K)
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In Fig. 3(c) and (d), however, the training and test set split method
is the same, but they are sorted by the ascending order of the formation
energy values instead of being randomized. In this way can we evaluate
how the trained RF and MLP models extrapolate from training samples
to samples with higher or lower properties. Both models achieve very
low errors in the middle training area like the previous experiment but

don’t perform well in the test area. As the property value of the test
samples deviates more from the training set boundary, the prediction
errors increase dramatically. However, compared with the previous
experiment, the difference between RF and MLP becomes much more
visible. The MLP model (see Fig. 3(d)) generalizes better than RF (see
Fig. 3(c)), especially in the left end test area. That’s why we have been

Fig. 3. Illustration of interpolation and exploration errors for RF and MLP models with one-hot composition representation tested on the MP formation energy
dataset. The samples are split into 10%, 80% and 10% distribution according to the sample order. The middle set is used as the training set and then the models are
evaluated over two test sets from both ends. However, in (a) and (b) the samples are unsorted and randomized, while in (c) and (d) the samples are sorted by the
formation energy value.

Z. Xiong, et al.



working on developing a new evaluation method to measure explora-
tion performance and analyzing how we are able to improve the ex-
plorative power of current ML models.

4.2. K -fold forward cross-validation helps to differentiate machine learning
models in terms of their explorative power

To compare traditional cross-validation and our forward cross-va-
lidation, we need to set the parameter k, the number of folds. In for-
ward cross-validation, the k value has a big impact on the result as it
decides how different in property values the validation set will be from
the training set. For traditional cross-validation, the k value would
usually be set as 5 to 10. When using forward cross-validation as the
evaluation method, however, we cannot expect the materials property
prediction models to perform well when predicting the unseen samples
that are far away from the domain of the training set. Therefore, larger
k makes more sense. The k value should be set the same for traditional
cross-validation and forward cross-validation, in order to compare the
results of both methods in the same circumstance. The problem that
remains is to find out how the k value influences the forward cross-
validation results. A series of CV and FCV experiments using k=10, 50,
100, 200, 500 are conducted to predict the MP formation energy using
RF models with Magpie descriptor. The MAE results are shown in
Table 3 and Fig. 4.

As expected, the CV results don’t change too much with different k,
because the k value doesn’t have a large impact on the distribution of
training and validation set due to the random split of samples. For FCV,
however, the MAE decreases significantly with increasing k when k is
small but the rope becomes smoother when k is larger than 100, as
shown in Fig. 4. The tradeoff is between the accurate explorative power
evaluation and computational intensity. We set k to 100 for all the
following experiments as the FCV results are stable when k is larger
than 100.

Table 4 shows all the property prediction results, using four metrics:
MAE, RMSE, R2, and Eaccuracy which is exclusively for FCV. The MAE
comparisons between two evaluation methods and Eaccuracy of FCV are
plotted in Fig. 5, providing a more intuitive view of the results.

In order to verify the correctness of our benchmark implementation
of the machine learning models, we compared our evaluated CV per-
formance with those reported in previous researches (see Table 1 and
Table 4). Ward et al. [11] applied the RF with Magpie descriptor for
formation energy prediction on the ICSD subset of OQMD dataset and
got an MAE of 0.09 eV/atom and a RMSE of 0.15 eV/atom, which is
comparable with the MAE of 0.0929 eV/atom and the RMSE of
0.1722 eV/atom in our experiments. Liu et al. [15] achieved an MAE of
0.072 eV/atom when applying MLP with one-hot composition re-
presentation to the OQMD dataset, which is also comparable with the
MAE of 0.0785 eV/atom in our experiment. For SuperCon dataset, re-
cent research [4] tried RF with Magpie descriptor and got a R2 of 0.88,
comparable with our 0.9158 result. Zheng et al. [13] trained a CNN
model using PTR representation on the X YZ2 type chemical formula
group from the OQMD dataset and achieved an MAE of 0.007 eV/atom.
From our experiment, an MAE of 0.1085 eV/atom is obtained when
applying this method to the general inorganic MP dataset. Xie and
Grossman [12] proposed CGCNN for formation energy and band gap
prediction and achieved MAEs of 0.039 eV/atom and 0.388 eV respec-
tively, compared with 0.1235 eV/atom and 0.5372 eV in our

experiments. The results of the last two models – CNN with PTR and
CGCNN – are not quite the same when comparing with the results in the
original studies (of which the CGCNN is the same implementation by
Xie and Grossman). The difference might come from different dataset
distributions. However, since our focus is on comparing the traditional
CV and forward CV in evaluating explorative power, the identical
machine learning model implementation and dataset guaranteed that
the results are correct and comparable.

By comparing the CV and FCV results of evaluated models on pre-
dicting each of the three different materials properties in Table 4, we
can have an overview of the explorative power of these benchmark
models. For the remaining discussion in this part, we will use 1NN, RF,
MLP, CNN and CGCNN to represent these benchmark ML algorithms
with descriptor/representation models: 1NN with Magpie descriptor,
RF with Magpie descriptor, MLP with one-hot composition re-
presentation, CNN with PTR and CGCNN - crystal graph CNN.

First, for the formation energy prediction problem, the best per-
formance with traditional CV is achieved with an MAE of 0.0785 eV/
atom by MLP while the worst performance belongs to 1NN with an MAE
of 0.2178 eV/atom, which can be regarded as the baseline model as
1NN algorithm is one of the simplest prediction models. This shows that
MLP has strong interpolation prediction capability. However, when
evaluating the explorative prediction capability, the best performance
is achieved by CGCNN with an FCV MAE of 0.1120 eV/atom and R2 of
0.9658. It is impressive that in this case, the MLP still achieves a close
second-best performance with FCV MAE of 0.1129 eV/atom and R2 of
0.9582. Altogether, these results show that MLP is a strong prediction
model for both interpolation and exploration for formation energy
prediction. Another observation is that the FCV performance scores
such as MAE, RMSE, and R2 of the evaluated algorithms are always
worse than those of the traditional CV performance, indicating the over-
estimated results of traditional CV evaluation methods when used to
make explorative predictions. When evaluated with the exploration
accuracy, it is interesting to find that both 1NN and RF achieve 0%
while MLP, CNN, CGCNN achieve 20.61%, 5.84%, and 28.69% accu-
racy. Actually, both 1NN and RF achieved 0% explorative prediction
accuracy for predicting all three properties. This shows that these two
models are not able to predict property values outside the range of the
training samples. While MLP, CNN, and CGCNN all have certain ex-
ploration capability, their low exploration accuracy (< 30%) demon-
strates that current machine learning algorithms struggle to meet the
requirement for the discovery of materials with out-of-bound property
values.

For the band gap prediction problem (see Table 4), the best CV
performance is achieved by RF. It has an R2 of 0.8050, which is sig-
nificantly better than that of three neural network methods tested here
including MLP (R2 0.7169), CNN (R2 0.6921), and CGCNN (R2 0.7348).
The 1NN only has a R2 of 0.3592. However, when evaluating the ex-
plorative power, the best performance is achieved by the neural

Table 3
Comparison of CV and FCV validation errors with different k value on forma-
tion energy prediction using RF with Magpie descriptor.

Evaluation method/k 10 50 100 200 500

CV 0.0952 0.0927 0.0925 0.0923 0.0924
FCV 0.3495 0.2146 0.1923 0.1822 0.1787
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Fig. 4. Trend of MAE using different k of k-fold CV and k-fold FCV, trained on
the formation energy dataset using RF with Magpie descriptor.
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Table 4
Summary of MAE, RMSE, R2and Eaccuracy on different datasets, properties, ML algorithm with descriptor/representation models and evaluation methods. Three
benchmark problems are formation energy from MP dataset, band gap from MP dataset and superconducting critical temperature from SuperCon. Both CV and FCV
use 100-fold. Five ML algorithm & descriptor/representation models are Magpie descriptor with 1NN, Magpie descriptor with RF, one-hot composition representation
with MLP, PTR representation with CNN, and CGCNN with crystal graph representation.

Benchmark problem Evaluation method Metrics 1NN with
Magpie

RF with Magpie MLP with one-hot
Encoding

CNN with PTR CGCNN -crystal graph
CNN

Formation energy prediction 100-fold CV MAE (eV/
atom)

0.2178 0.0929 0.0785 0.1085 0.1235

RMSE (eV/
atom)

0.3641 0.1722 0.1598 0.2027 0.1719

R2 0.8833 0.9739 0.9775 0.9638 0.9739
100-fold FCV MAE (eV/

atom)
0.2484 0.1923 0.1129 0.1606 0.1120

RMSE (eV/
atom)

0.3835 0.2468 0.1898 0.2406 0.1555

R2 0.8293 0.9293 0.9582 0.9328 0.9658
Eaccuracy 0% 0% 20.61% 5.84% 28.69%

Band gap
prediction

100-fold CV MAE (eV) 0.7553 0.4511 0.5156 0.5428 0.5372
RMSE (eV) 1.1030 0.6085 0.7331 0.7645 0.7095
R2 0.3592 0.8050 0.7169 0.6921 0.7348

100-fold FCV MAE (eV) 0.7689 0.6967 0.6266 0.6510 0.6966
RMSE (eV) 1.0990 0.7800 0.7663 0.7603 0.7985
R2 0.2476 0.6210 0.6342 0.6399 0.6028
Eaccuracy 0% 0% 3.27% 1.36% 3.03%

Superconductivity
critical temperature
prediction

100-fold CV MAE (K) 6.0926 5.3000 8.6967 29.9755 N/A
RMSE (K) 12.1576 9.1888 14.2092 41.6868
R2 0.8526 0.9158 0.7987 −0.7329

100-fold FCV MAE (K) 7.7584 8.8649 10.6022 30.9053 N/A
RMSE (K) 14.0036 12.8201 14.1407 49.6371
R2 0.7905 0.8244 0.7864 −1.6321
Eaccuracy 0% 0% 3.18% 0.47%
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(a) Performance comparison of formation energy 
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(b) Performance comparison of band gap prediction
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(c) Performance comparison of superconducting critical 
temperature prediction

Fig. 5. Interpolation (CV) and exploration (FCV) performance comparison of five models for three materials properties: a) formation energy; b) band gap; c)
superconducting critical temperature; MAEs and exploration accuracy from 100-CV and 100-FCV evaluations are reported for five different models including (1) 1NN
with Magpie descriptor, (2) RF with Magpie descriptor, (3) MLP with one-hot representation, (4) CNN with PTR, (5) CGCNN-crystal graph CNN.
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network method CNN with a R2 score of 0.6399, which is however
much lower than the best R2 score (0.9658) for formation energy pre-
diction. In this case, both RF and 1NN get a 0% exploration accuracy
score, showing their lack of explorative power. While the three neural
network models have non-zero exploration accuracy, their accuracy
scores prediction (3.27% for MLP, 1.36% for CNN, and 3.03% for
CGCNN) are significantly lower than those for formation energy pre-
diction (20.61% for MLP, 5.84% for CNN, and 28.69% for CGCNN). The
much lower best performance metrics for band gap prediction com-
pared to formation energy prediction shows the challenge for this
problem. This unusually low exploration accuracy scores of current ML
methods show that more advanced explorative prediction algorithms
need to be developed for materials discovery, especially for discovering
“outlier” materials with extremely low or high property values located
out of the range of known materials.

For the superconducting critical temperature prediction problem,
the best CV performance (see Table 4) is again achieved by RF with an
R2 of 0.9158, which is seconded by 1NN with 0.8526. By comparison,
the MLP only achieves a R2 score of 0.7987. Surprisingly, the CNN to-
tally fails with a R2 of −0.7329. When evaluated with FCV to measure
their explorative power, the best R2 score of 0.82 is achieved still by RF,
followed by 1NN with a score of 0.7905 and MLP with a score of
0.7864. RF and 1NN still have 0% exploration accuracy while the MLP
and CNN also get only 3.18% and 0.47%, both of which are much lower
than the formation energy prediction problem and the band gap pre-
diction problem. This indicates the much higher challenge for pre-
dicting superconducting critical temperature and discovering novel
superconductor materials with extremely high critical temperatures.
We also analyzed the main reason that 1NN performs well on this Su-
perCon dataset. It is partially due to this dataset containing many clo-
sely related materials varying only by small changes in stoichiometry
[4], which enables 1NN to make a good prediction by identifying the
neighbor sample. A similar explanation applies to RF, which is related
to nearest-neighbor methods.

To provide a more comprehensive picture of the comparison be-
tween three prediction problems, we plot their CV MAE, FCV MAE and
Eaccuracy in Fig. 5. First, it can be found that the FCV MAEs are all higher
than the traditional CV results for all three problems, which indicates
that the traditional CV tends to over-estimate the prediction perfor-
mance when used to evaluate the explorative prediction powers of
machine learning algorithms. The second observation is that the largest
discrepancy between the traditional CV MAEs and the FCV MAEs are all

from RF for all three prediction problems. For instance, RF has a CV
MAE of 0.0929 eV/atom and FCV MAE of 0.1923 eV/atom when pre-
dicting formation energy, and CV MAE of 0.4511 eV and FCV MAE of
0.6967 eV when predicting band gaps. This demonstrates that even
though RF works well in interpolative prediction when predicting the
properties of validation samples within the same domain as the training
set, its performance of exploration is not as good as neural network
algorithms and is just comparable with the 1NN method.

In comparison, the other three neural network models MLP, CNN
and CGCNN achieve more similar CV and FCV MAE results as shown in
Fig. 5 except the case of superconductivity prediction, for which CNN
does significantly worse than the other NN methods. However, the
exploration accuracy of all five algorithms is still quite low, showing the
difficulty of the current ML models to correctly predict the property
values for samples outside of the training samples domain. There is still
large room for ML models to make progress in explorative prediction.

With close inspection, we found that the lack of exploration cap-
ability of random forest algorithms is due to its underlying mechanism.
Random forest is an ensemble method with multiple decision trees. The
regression predictions of a random forest are done through averaging
the results obtained by its multiple decision trees. However, decision
trees cannot predict values outside the range of the training samples. A
regression tree consists of a hierarchy of nodes, where each node spe-
cifies a test to be carried out on an attribute value and each leaf
(terminal node) specifies a rule to calculate a predicted output. The
trees themselves output the mean value of the samples in the leaves. It's
impossible for the result to be outside the range of the training samples
because the average is always inside the range of its constituents.
Similarly, the 1NN algorithm can only predict the property value of a
test sample as the value of the closest neighbor, which cannot be out-
side the range of the training samples either. Lin and Jeon [37] explains
the relationship between random forests and the k-nearest neighbor
algorithm (KNN) and showed that both can be viewed as weighted
neighborhoods schemes. This demonstrates that exploration accuracy
Eaccuracy is a good metric for measuring the explorative power of pre-
diction models.

To further compare the traditional CV with FCV results, Fig. 6
presents the parity plots to show how the predicted formation energies
are compared with the DFT calculated values (ground truth) for all five
models using two evaluation methods. The figures in the first row are
100-fold CV results while the ones in the second row are 100-fold FCV
results. From the 100-fold FCV results (see Fig. 6(b) and (d)), it is clear

Fig. 6. Parity plots comparison of five ML models for formation energy prediction over the MP formation energy dataset. The first row and second row are the
comparisons between 100-fold CV and 100-fold FCV using the same ML models. The five models are (1) 1NN-Magpie: 1NN with Magpie descriptor, (2) RF-Magpie:
RF with Magpie descriptor, (3) MLP-composition: MLP with one-hot composition representation, (4) CNN-PTR: CNN with PTR, (5) CGCNN: crystal graph CNN.
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to observe that in the 1NN and RF results all the points are below the
lines on which the predicted values are equal to the DFT values. This
shows that both 1NN and RF cannot predict any formation energy
higher than the true DFT values. Moreover, the 0% Eaccuracy of these two
models means they cannot even predict beyond property values of the
training set. Also, we found that the points in Fig. 6(h) are also mostly
located below the line, indicating the CNN model also has low ex-
plorative power. It actually has an Eaccuracy of only 5.84%. On the other
hand, the MLP and especially CGCNN have much more points located
above the equation line, which correspond to their higher exploration
accuracy of 20.61% and 28.69% respectively. This shows that our
proposed exploration accuracy Eaccuracy is a good metric to measure if a
model has good exploration capability, that is, predicting outputs be-
yond those of the training set.

4.3. Comparison of explorative prediction performance of machine learning
algorithms

To compare the explorative power of different algorithms, we need
to eliminate the influence of materials representation. Here three ma-
chine learning models including 1NN, RF and MLP are trained using the
same one-hot composition representation for predicting three materials
properties: formation energy, band gap, and superconducting critical
temperature. The datasets of formation energy and band gap are ex-
tracted from Materials Project with 35,216 and 20,065 samples re-
spectively. The SuperCon dataset has 6,258 samples. Compared with
the experiments in Section 4.2, the datasets here are of much larger
sizes.

The results are shown in Table 5 and Fig. 7. First, we found that MLP
achieves the best CV performance with the lowest MAEs for both for-
mation energy and band gap prediction problems. However, its CV
performance on superconducting critical temperature prediction is the
worst with an MAE of 9.0829 K compared to 5.7657 K of RF and
6.6673 K for 1NN, indicating the unusual characteristics of this pro-
blem. Next, we compared the 100-fold CV performance of the algo-
rithms with those of 100-fold FCV as shown in Fig. 7. We found the CV
performance is all over-estimated when used to measure the explorative
power as the FCV is designed for. For example, the RF achieves a CV
MAE of 0.1505 eV/atom for formation energy prediction while its FCV
score is only 0.2839 eV/atom, almost double of the error (See Table 5).
It is also found that the discrepancies between CV and FCV MAEs for the
RF models are consistently the largest compared to other algorithms,
which is consistent with our previous analysis, showing that RF per-
forms well on CV (partially due to the redundant similar samples in the
training and test sets) but doesn’t really have explorative power.

4.4. Explorative power evaluation using k-fold-m-step forward cross-
validation

To further evaluate the explorative power of prediction models, we
generalize the standard k-fold FCV to k-fold-m-step FCV. In the stan-
dard FCV, as shown in Fig. 2, the validation set is near to the training
set in terms of prediction values. To make the evaluation more chal-
lenging, at each fold we set the subset as more than one set/fold away
from the training set as the validation set. This can reduce the influence
of redundant samples of neighbor sets on the over-estimation of the
explorative prediction power.

To show how kmFCV can be used to achieve a stricter evaluation of
the explorative power, we applied traditional CV, 1-step FCV (standard
FCV), 2-step FCV, and 3-step FCV to evaluate RF and MLP for formation
energy prediction problem. The fold value k for all methods is set as
100. The one-hot composition representation is used here to encode the
materials in the MP formation energy dataset. The results are shown in
Fig. 8 and Table 6.

First, from Fig. 8, we found that the prediction error MAEs increase
with the increasing step m (the gap between the validation set and
training set in terms of property values) for both RF and MLP. This is
expected as the validation set becomes farther away from the training
set, which makes it more difficult to predict the formation energy of
those distant validation samples. This proves thatm-step forward cross-
validation is a more stringent method for evaluating explorative power
of prediction models. In terms of exploration accuracy, the RF models
have 0% for all m-step FCV while the MLP model increases with in-
creasing m ranging from 20.52% to 36.29% (see Table 6). This is ex-
pected because the classification threshold stays the same as the largest
property value in the training set no matter how the step value m
changes. The further away from the validation set, the easier to classify
validation samples into categories with lower or higher property values.
These experiments demonstrate that neural networks are able to predict

Table 5
Exploration performance comparison of 1NN, RF and MLP algorithms for pre-
dicting formation energy, band gap and superconducting critical temperature
using one-hot composition representation.

Benchmark problem Evaluation
method

Unit 1NN MAE RF MAE MLP MAE

Formation energy
prediction

100-fold CV eV/atom 0.2034 0.1505 0.0719
100-fold
FCV

0.2157 0.2839 0.1022

Band gap prediction 100-fold CV eV 0.8692 0.5957 0.5210
100-fold
FCV

0.9412 0.8575 0.6612

Superconducting
critical
temperature
prediction

100-fold CV K 6.6673 5.7657 9.0829
100-fold
FCV

7.8075 9.3510 10.8964
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Fig. 7. CV and FCV MAE comparison of three algorithms for predicting for-
mation energy, band gap and superconducting critical temperature using one-
hot composition representation.
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Fig. 8. Explorative power comparison of RF and MLP in terms of traditional CV,
1-step FCV, 2-step FCV, and 3-step FCV MAE and Exploration accuracy on
formation energy predictions using one-hot composition representation.
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property values outside of the range of the training samples. It also
shows that we can apply different step/gap sizem to set up the level of
difficulty in evaluating explorative prediction power of models.

5. Conclusions

We identified a special category of explorative materials property
prediction problems in new materials discovery, which needs to predict
property values out of the range of the training set. The limitations of
traditional k-fold cross-validation methods for evaluating the ex-
plorative prediction performance of machine learning models for such
problems are discussed. Accordingly, we proposed a family of k-fold-
m-step forward cross-validation (kmFCV) methods as a new evaluation
approach for benchmarking machine learning algorithms for ex-
plorative prediction. A new exploration accuracy metric is also pro-
posed to directly reflect the explorative power. We applied forward CV
and traditional CV to evaluate the performance of five machine learning
models for three materials property prediction problems. Our compre-
hensive benchmark results showed that traditional CV methods tend to
over-estimate the prediction performance when used for explorative
materials property prediction. We also found 1NN and RF have no ex-
plorative power while MLP and CNN have better exploration capability,
which however are still far from being satisfactory for discovering new
materials with extremely low or high materials property values. Our
work demonstrates the urgent need for improving the explorative
power of the current machine learning models for new materials dis-
covery.
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